HOJA TÉCNICA

Equivalencia:	ASTM A276/A276M-17: 316L			AISI / SAE 316 L			DIN 1.4404 / DIN 1.4435			JIS ~ SUS 316L		
Composición Química:	%C	%Mn	%	Р	%S		%Si %Cr		%Ni		%Mo	
	0.030 máx.	2.00 máx.	0.045	máx.	0.030 mín	1.	00 máx.	16.0 - 18.0	10.0 - 14.0		2.0 - 3.0	
Condición de Suministro:	Dureza de recocido aproximada de 215 HB.											
Propiedades mecánicas (apróx. a temperatura ambiente):	Resistencia a la tensión MPa (Lb/in²)			Límite elástico MPa (Lb/in²)			Elongación (%)			Reducción de área		
	485 (70,000)			170 (25,000)			30			40		

[•] Los valores señalados son típicos y en condición de recocido, no son mandatorios y deben tomarse solo como referencia en las características generales de estos aceros (ASTM A276 / A276M-17) y BS EN 10088-3:2005.

CARACTERÍSTICAS

Acero inoxidable del tipo austenítico **Cr – Ni – Mo**, que se distingue por:

- De muy alta resistencia a la oxidación y corrosión en comparación con aceros inoxidables del tipo Cr o Cr - Mo. tanto en ambientes marinos, como en ambientes químicos severamente corrosivos.
- No es magnético en condición de recocido, aunque puede alcanzar cierto grado cuando es sometido a procesos de conformación tales como, maquinado o deformación en frío (endurecimiento por deformación).
- Menor sensibilidad a la precipitación de carburos durante procesos de calentamiento y enfriamiento, lo que disminuye la posibilidad de agrietamiento intergranular.
- Superior resistencia a la fluencia a elevadas temperaturas en comparación a inoxidable 304.
- Con buenas características de forjabilidad y soldabilidad.
- Menor conductividad térmica que los aceros al carbono, de baia aleación o grado herramienta, aproximadamente el 50%.

APLICACIONES

- Destinado a la manufactura de componentes de la industria química, alimenticia, farmacéutica, médica, oil & gas, aeronáutica y todos aquellos componentes que requieran la máxima resistencia a la corrosión.
- Componentes mecánicos que requieran procesos de soldadura y expuestos a tensiones mecánicas.
- Puede ser sustituido por AISI 304, considerando una disminución de la resistencia a la corrosión y mayor sensibilidad de corrosión intergranular.

AISI 316 L.

TRATAMIENTO TÉRMICO (Recomendaciones generales)

RELEVADO DE TENSIONES:

 No es común, pero en caso de considerarse necesario para una mejor estabilidad dimensional, sea después de un severo maquinado o recocido de solución, podrá someterse a una temperatura que oscile entre 230 – 400°C por un tiempo de 2 horas (en función de la masa) y posterior enfriamiento a aire calmado; este proceso no altera la condición estructural.

RECOCIDO COMPLETO:

- Comúnmente denominado como recocido de solución, y consiste en elevar la temperatura a la zona de austenización comprendida entre 1040 a 1120°C con enfriamiento rápido:
 - Agua secciones grandes.
 - Aire forzado para secciones medias.
 - Aire calmado para secciones delgadas.

- Una vez alcanzada la temperatura y el tiempo, no deberá pasar más de 3 minutos para que la coloración por efecto de enfriamiento cambie a obscura.
- Enfriar lento en el rango de 425 a 890°C, puede provocar precipitación excesiva de carburos al límite de grano y provocar una disminución de la resistencia a la corrosión o inducir el fenómeno de corrosión intergranular.
- Cabe señalar que la exposición a temperaturas altas, provocará oxidación superficial, por lo que, si se desea proteger el acabado superficial obtenido durante el maquinado, deberá usarse una atmósfera inerte, sea vacío, argón, helio o nitrógeno.

ENDURECIMIENTO:

No responde a endurecimiento convencional por temple.

Los datos aquí proporcionados están basados en conocimientos actuales y tienen por objetivo dar una información y guía general, así como sus campos de aplicación; por lo que no se debe considerar sea una garantía de la funcionalidad en cualquier tipo de aplicación.